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Abstract Allowing for copyright protection and own-
ership assertion, digital watermarking techniques, which
have been successfully applied for classical media types
like audio, images and videos, have recently been adapted
for the newly emerged multimedia data type of 3D ge-
ometry models. In particular, the widely used spread-
spectrum methods can be generalized for 3D datasets by
transforming the original model to a frequency domain
and perturbing the coefficients of the most dominant ba-
sis functions. Previous approaches employing this kind
of spectral watermarking are mainly based on multires-
olution mesh analysis, wavelet domain transformation
or spectral mesh analysis. Though they already exhibit
good resistance to many types of real-world attacks, they
are often far too slow to cope with very large meshes due
to their complicated numerical computations. In this pa-
per, we present a novel spectral watermarking scheme us-
ing new orthogonal basis functions based on radial basis
functions. With our proposed fast basis function orthog-
onalization, while observing similar persistence with re-
spect to various attacks as other related approaches, our
scheme runs faster by two orders of magnitude and thus
can efficiently watermark very large models.

Keywords Digital Watermarking · Large Meshes
Watermarking · Radial Basis Functions · Spectral
Decomposition

1 Introduction

Watermarking is an established way to provide copy-
right protection and ownership assertion in the area of
steganography. Most availible digital watermarking tech-
niques have been focusing mainly on classical media data
types like audio, images and videos because of the dom-
inancy of these data distributed on the Internet [15,8].
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Fig. 1 The Iphigenie model (left, 1.01M vertices, 2.02M
triangles) is watermarked in 86 seconds (middle) using 100
orthogonal basis functions. Although without perceptible vi-
sual differences, these two meshes have a maximum Hausdorff
distance of 1.64% of the major bounding box diagonal length
(right, distances with color coding - blue minimum and red
maximum).

Due to their regularly parametrized functional represen-
tations, most watermarking schemes are based on spread-

spectrum methods with signal processing, i.e., the me-
dia data have to be transformed into a spectral domain,
then the coefficients corresponding to the most percep-
tually salient basis functions will be modulated with wa-
termarks to achieve robustness against possible attacks.

Extending the above spectral watermarking methods
to the newly emerged multimedia data type of 3D ge-
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ometry models is difficult mainly because of the lack
of basic 3D signal processing tools like filtering, regu-
lar parametrization and frequency analysis. On the other
hand, with a drastically increasing availability of 3D data-
sets and practical geometric applications in recent years,
the need for efficient watermarking schemes for 3D mod-
els becomes more eminent.

Previous robust 3D spectral watermarking approaches
have been adapted and based mainly on multiresolution
mesh analysis, wavelet domain transformation or spec-
tral mesh analysis. Although they already exhibit good
resistance and robustness to many types of real-world at-
tacks, they are often far too slow to cope with nowadays
large meshes due to the involved complicated numerical
computations.

In this paper, we present a novel imperceptible spec-
tral watermarking scheme to support ownership claims
on triangle meshes of given 3D shapes (cf. Fig. 1). To
span the spectral domain for watermarking, it uses a
new set of orthogonal basis functions derived from ra-
dial basis functions (RBFs), which can lead to optimal
concentration of the shape information to just a few (low-
frequency) modes (cf. Fig. 4). Concluding from extensive
tests on different models, our watermarking scheme ex-
hibits almost the same watermarking quality and robust-
ness against various real world attacks as other related
spectral approaches. On the other side, by utilizing a
fast basis function orthogonalization algorithm, our wa-
termarking scheme runs much faster by two orders of
magnitude, hence can process and watermark very large
models more efficiently.

1.1 Related Work

Most previous works to watermark 3D models have been
trying to mimic the common spectral approaches in some
alternative ways, though early works on 3D watermark-
ing even did not utilize the spectral idea. Watermarks
were embedded into 3D meshes by directly modifying
either the geometry, the vertex positions, the topology,
the vertex connectivity [18,19,12], or the surface nor-
mals [3]. Simple enough, these kind of methods usually
can not provide enough robustness with respect to many
different types of ordinary attacks.

Kanai et al. [13] decomposed the target mesh into
a spectral domain by applying the lazy wavelet trans-

form proposed by Lounsbery et al. [16]. Wavelet coef-
ficients were then modified to embed watermarks. Ex-
tending this work, a blind watermarking algorithm was
presented more recently [31] that can ignore the original
mesh information on the detector side. One constraint to
these methods is that the input mesh is limited to have
a prerequisite semi-regular subdivision connectivity.

Multiresolution analysis is another way to construct
the spectral-like domains. While Praun et al. [23] used
standard mesh simplification [10] to construct multires-
olution hierarchies, Yin et al. [33] adopted the scheme

���������	
��


�
��������������

� ��
���������
�

�
������������

� ��
�����
��	
��

�
����������

�
��������


�
��������������

� ��
�������������

���
�����

���
����� ����������

�
���
�
�
�

Fig. 2 A typical watermarking scenario.

in [11] to perform the multiresolution decomposition.
Watermark information can be embedded into some spa-
tial kernels of the low-frequency component of the shape
corresponding to the low-resolution representation in the
geometry hierarchy.

Recent spectral domain watermarking algorithms em-
ployed the spectral mesh analysis first proposed by Karni
and Gotsman [14]. Eigenvectors of the Laplace matrix to
the input mesh, the Laplace basis functions, can span an
ideal spectral space for robust watermarking, i.e., lead-
ing coefficients corresponding to smallest eigenvalues can
be modulated with watermarks [20]. Later this idea was
generalized to watermark the topology-free point-based
geometry in [7] where k-nearest neighbors have to be
constructed to compose substitute Laplace matrices.

Despite the variety of available mesh watermarking
algorithms, to our knowledge, none of them has reported
to be able to watermark meshes with more than 104 ver-
tices mainly because of their involved complicated nu-
merical computations. We will present a fast yet robust

spectral watermarking algorithm based on the orthogo-
nalization of a small set of radial basis functions that can
efficiently handle large meshes even with more than 106

vertices (cf. Fig. 1).

Except for our geometry dependant basis functions
derived from RBFs, we note that other bases can have
similar functionality as ours such as the harmonic func-
tions computed with mesh Laplacian which were recently
used for surface deformation and shape approximation
[25,34]. Other than the necessary post orthogonaliza-
tion step, they still have to solve sparse linear systems
of Laplace equations, which makes them less efficient as
ours. In addition, other than in digital watermarking,
the fact that altering the low frequency components of
a shape remains nearly invisible to the human eyes has
also been observed in mesh compression [26].
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2 Overview

Following the most successful spread-spectrum water-
marking idea, we also watermark 3D meshes in the spec-
tral domain. The whole watermarking scenario which is
typically composed of the watermark embedding and the
watermark extraction steps, is illustrated in Figure 2
similar to [20,7].

The major difference of our scheme compared to pre-
vious work is that we use a new set of geometry de-
pendant orthogonal basis functions derived from radial
basis functions (cf. Section 3) to span the spectral space
rather than using Laplace basis functions which emerge
from the Laplace matrix that depends only on the mesh
connectivity. We will present a fast algorithm to gen-
erate these orthogonal basis functions. Compared with
the time-consuming eigensolvers for Laplace matrices,
our method runs faster by two orders of magnitude and
thus can efficiently watermark very large meshes as they
are common today. Having the new orthogonal basis
functions in hand, the remaining watermarking proce-
dures are quite similar to other spectral watermarking
approaches.

The watermark embedding phase (cf. Section 4) first
computes a small set of our new orthogonal basis func-
tions. Then the geometry of the original mesh is pro-
jected to these basis functions spanning the spectral do-
main to acquire a set of corresponding spectral coeffi-
cients. Watermarks will be encoded into the leading coef-
ficients which can be used later to reconstruct the water-
marked mesh together with the unmodified coefficients.
Finally this watermarked mesh will be publized with li-
censes if necessary and possibly receive some attacks.

To assert ownership, the watermark extraction step
(cf. Section 5) has to be performed. The possibly at-
tacked test mesh is first aligned by a registration routine
and resampled by projections according to the original
watermarked mesh. Then this modified attacked mesh
will be transformed to the same spectral domain as in
the embedding phase. Watermarks can be extracted by
comparing the current and original coefficients. The cor-
relation between the extracted and original watermarks
will also be found to draw the final ownership assertion.

3 New Orthogonal Basis Functions

The basic idea of spectral watermarking is to represent
the geometric information of a mesh with respect to a
special basis such that most of the information is cap-
tured in just a few coefficients. These coefficients are then
used to embed the watermark.

More precisely, let M be a given mesh with vertex
positions p1 . . .pn ∈ IR3. Then we want to find a basis
B1 . . .Bn ∈ IRn such that

(p1 . . .pn)T =

n
∑

j=1

Bj cT
j
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Fig. 3 Singular values {wi} corresponding to the 100 or-
thogonal basis functions of the Rocker arm mesh (Fig. 4,
middle right). The respective spectrum energy Ei ∈ [0, 1] is

computed as Ei =
√

(
∑i

j=1
w2

j )/(
∑

100

j=1
w2

j ). Note that most

of the energy is concentrated in the leading part.

with coefficients cj ∈ IR3. The particular basis should
have the property that the approximation error

Ek = ‖(p1 . . .pn)T −
k

∑

j=1

Bj cT
j ‖

decreases as quickly as possible. A very bad example is
the canonical basis Bj = (0 . . . 1 . . . 0)T for which the er-
ror Ek decreases only linearly in k. A much better exam-
ple is the set of basis functions which emerge as eigenvec-
tors from the topological Laplace matrix defined through
the connectivity of the given mesh. This basis has been
used in [14] where it has been shown empirically that the
approximation error Ek decreases so fast that only a few
hundreds to thousands of basis coefficients are sufficient
to encode even fairly complex shapes [2].

Another important property of the basis is orthogo-
nality since in this case the coefficients cj can simply be
computed by a dot product

cj = (p1 . . .pn) Bj .

Both, the canonical as well as the Laplace basis are or-
thogonal. However, both bases have the important draw-
back that their basis function definition completely ig-
nores the geometry of the input shape. Although the
Laplace basis does depend on the mesh connectivity, the
geometric shape of the input mesh only plays a minor
role under the assumption that the mesh quality (i.e.,
the shape of the triangles) establishes a loose correlation
between geometric and topological distance.

In this paper we are constructing a particular orthog-
onal basis which, on the one hand is optimized for the
shape of the input geometry and on the other hand con-
centrates as much geometric information as possible in
as few coefficients as possible. We start by defining a
pre-basis {Bj} and then augment it later.

We are using radial basis functions (RBFs) [29,6,17,
30,21,22,28] to capture the mesh geometry information.
Let q1 . . .qk be a set of 3D positions scattered in the
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Fig. 4 The Rocker arm mesh (left-most, 40K vertices) approximated with 100 orthogonal basis functions based on RBFs
using decimated centers (red dots, middle left) and the random uniform centers (middle right). The right-most image shows
the vertex-to-vertex deviation vectors from the random center RBF approximation to the original model where vectors
pointing inside the object are flipped and rendered as green lines. Notice the good approximation quality of only 100 basis
functions and the small differences between two different center placement strategies as well.

vicinity of the mesh surface. There are many possibilities
to define these positions, e.g., by selecting the remain-
ing points in pi after the mesh decimation with halfedge
collapses, or even randomly selecting a uniform subset
of the vertices pi. (See Figure 4 for a comparison, if not
otherwise stated, we will always use random uniform se-
lection for efficiency reasons). The qj are used as the
centers of a set of radial basis functions

φj(p) = φ(‖p − qj‖)

where we choose φ(·) to be a monotonically decreas-
ing function with compact support, e.g. φ(r) = (1 −
r)4+(4r +1) like in [32,22] with r = ‖p−qi‖/σ and σ its
support size (usually half the length of main bounding
box diagonal to prevent singularity of the later composed
matrix B).

If we evaluate these radial basis functions at all ver-
tex positions pi, we obtain our set of discrete pre-basis
functions

Bj = [φj(p1) . . . φj(pn)]T .

Due to the compact support of φ(·), the discrete pre-
basis functions are very likely to be linearly independent
in IRn. Moreover if the radial basis functions φj(·) have a
sufficient overlap then it turns out that a relatively small
number k of pre-basis functions are already sufficient to
represent the geometric information of the input mesh
fairly accurately (cf. Fig. 4), i.e.,

(p1 . . .pn)T ≈

k
∑

j=1

Bj cT
j .

Moreover, if we choose the distribution of the centers qj

fairly uniform (and we assume that the vertices pi are
also distributed uniformly over the mesh surface) then
it turns out that the coefficients cj ’s magnitudes do not
differ too much.

Notice that the choice of the actual number k of pre-
basis functions has influence only on the computation
time of the subsequent orthogonalization step and not
on the applicability of the approach in general.

Remember that our goal is to construct an orthogonal
basis which concentrates most of the geometric informa-
tion in just a few coefficients. In order to obtain this basis
we compute a singular value decomposition (SVD [24]) of
the matrix B ∈ Rn×k which has the pre-basis functions
Bj as its columns. With this decomposition we find

(p1 . . .pn)T ≈ B (c1 . . . ck)T

= UWVT (c1 . . . ck)T

= U (c′1 . . . c′k)T .

Hence the orthogonal columns of U form a new set of
discrete basis functions. The corresponding coefficients
c′j are obtained by first multiplying the initial coefficients

cj by the orthogonal matrix VT and then multiplying
the j-th coefficient with the j-th singular value of B.

With increasing overlap, i.e., with increasing radius
of the radial basis function φj(·), we observe a stronger
and stronger decay of the singular values of B and hence
a more and more pronounced concentration of the geo-
metric information to just a few leading coefficients (cf.
Fig. 3). In fact, suppressing the later coefficients c′l . . . c

′

k

(which have been multiplied by the smaller singular val-
ues) causes only an additional squared approximation
error of

E′

l

2
=

k
∑

j=l

‖c′j‖
2

due to the orthogonality of the columns of U.
While the concentration effect observed with our or-

thogonalized basis is similar to the effect observed with
the eigenbasis of the Laplace operator, the advantage
of our approach is that its computation is significantly
faster. In fact, computing the eigenbasis of a very large
sparse matrix is a numerically challenging task and usu-
ally large meshes are split into smaller patches and pro-
cessed separately in order to cope with this problem [14,
20].

In our case, however, we do not have to analyze the
large (n× k) matrix B directly. Instead it is sufficient to
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decompose the much smaller symmetric (k × k) matrix
BT B into

BT B = VWUT UWVT = VW2 VT .

With this decomposition we can easily find the orthogo-
nalized basis by

U = BVW−1.

Since k is usually much smaller than n, the time spent
to compute the SVD is negligible and the computation
time is dominated by the multiplication of B and V.

4 Watermark Embedding

Similar to other spectral watermarking approaches, our
watermarking scheme embeds the digital watermarks by
modifying the low-frequency components of a given shape
in the spectral domain. As we have discussed in Sec-
tion 3, the new orthogonal basis functions {Bi} derived
via SVD will be used to decompose the input mesh into a
spectral representation and the coefficients of the leading
part of the spectrum which are more robust against at-
tacks, then can be modulated. The watermarked mesh is
later produced with an inverse transform using the same
basis functions and is ready to be distributed.

More specifically, given the original (large) input mesh
Mo with n vertices, a set of k orthonormal basis func-
tions {Bi} is first computed to span a spectral domain.
Then spectral analysis is performed by projecting the
mesh geometry (all three x, y, z components) onto each
basis function Bi to produce 3k mesh spectral coefficients

{α
(x)
i }, {α

(y)
i } and {α

(z)
i }, i.e.,

α
(d)
i =

n
∑

j=1

p
(d)
j Bi,j , i = 1...k, d ∈ {x, y, z}, (1)

where Bi,j denotes the j-th entry of the i-th basis func-
tion. Based on these, a spectral mesh representation M′

o

(cf. Fig. 4 middle) can in turn be assembled to approxi-
mate the original mesh Mo with an inverse transform:

M′

o =

k
∑

i=1

αiBi.

The approximation quality of M′

o is already quite good.
But as we only use a small number of basis functions
(k � n), we still observe small vertex-to-vertex differ-
ences between the approximation M′

o and original Mo

(cf. Fig. 4 right). These differences ∆ will be recorded
separately to help the later reconstruction, i.e.,

∆ = Mo −M′

o = Mo −

k
∑

i=1

αiBi.

The watermarks are a binary bit string {bi} with
length 3m and m < k. To embed watermarks into the
spectral representation, we first convert {bi} to a sign

string {b′i} with b′i = −1 for bi = 0 and b′i = 1 for bi = 1.
Then the first 3m spectral coefficients are modulated as

β
(d)
i = α

(d)
i · (1 + b′3i+d · ρ), i = 1...m, d ∈ {x, y, z},

where ρ is the watermarking amplitude.
Finally, these modulated coefficients {βi}, together

with the unchanged ones {αi} and the differences ∆, are
composed to reconstruct the output watermarked mesh
Mw,

Mw =

m
∑

i=1

βiBi +

k
∑

i=m+1

αiBi + ∆.

5 Watermark Extraction

The watermarked mesh Mw will be distributed with li-
censes if necessary and will possibly receive some types of
real world attacks. To assert ownership of this attacked
test mesh Mt, previous embedded watermarks have to
be extracted as we will discuss in the following.

To undo a possible similarity transform or translation
attacks, the attacked mesh Mt first has to be aligned
with the watermarked mesh Mw. We have used a typi-
cal registration toolbox developed in [1] to compute an
affine map for the final alignment. In principle it needs
user intervention to define three matching point pairs
to compute initial absolute orientations followed by an
automatic iterative closest point (ICP) algorithm [4] to
improve the initial registration till a local error minimum
is reached.

After registration, a resampling phase is usually nec-
essary to deal with those attacks that may modify the
mesh topology like simplification or remeshing. The goal
is to map the original topology of Mw to Mt as our
basis functions {Bi} are defined in the vertex indices or-
der. Only when the two meshes have the same vertex or-
der, the comparisons between their spectral coefficients
to extract the watermarks will be reasonable. Because
the registration has already minimized the distances be-
tween Mt and Mw, we can use a simple nearest point
search strategy to obtain the resampled test mesh M′

t:
the topology of M′

t is the same as Mw and each ver-
tex v′

i of M′

t is fixed as the nearest point of the cor-
responding vertex pi of Mw on the mesh surface Mt.
Note that like [23] this resampling step also marks ver-
tices as cropped if the nearest distances are larger than
a user-defined threshold to account for possible cropping
attacks.

Having the registered and resampled test mesh M′

t,
we perform a similar spectral analysis to it as Equ. (1) to

get another set of 3m spectral coefficients {γ
(x)
i }, {γ

(y)
i }

and {γ
(z)
i }. Then for each x, y or z component, water-

marks are extracted as follows,

c
(d)
i =







1, if γ
(d)
i > α

(d)
i + ε,

0, if γ
(d)
i < α

(d)
i − ε,

N/A, otherwise,
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Fig. 5 Computation times for embedding the watermarks
into various models.

where ε is the detection sensitivity and is set to 0.1ρ.
Since various attacks might disturb some of the em-

bedded watermarks, bitwise comparisons have to be per-
formed to create the correlation between embedded wa-
termarks {bi} and extracted watermarks {c

(d)
i }, i.e., the

correlation will be

R =
1

3m
·

m
∑

i=1

z
∑

d=x

( c
(d)
i == b(3i+d) ). (2)

The final ownership assertion can then be made as in [7].
If the correlation R is larger than a specified threshold
(e.g. 0.75), we affirm that the attacked test mesh Mt

contains the originally embedded watermarks.

6 Results

We have tested our watermarking algorithm on various
typical 3D mesh datasets. The overall performance in-
cluding the timing measurement and memory estima-
tion is first to be discussed. The watermarking robust-
ness of our scheme will be verified with a lot of diverse
real world attacks. A comparison between our orthogo-
nal basis functions based on RBFs and the Laplace basis
functions will also be conducted. All experiments shown
here have been done on a commodity Linux PC with a
3.2GHz P-IV CPU and 2GB main memory. Some im-
portant parameters are usually set as following (if not
otherwise specified): basis function number k = 100, wa-
termark length 3m = 24 and watermarking amplitude
ρ = 0.01.

6.1 Overall Performance

Computation times of our watermark embedding process
are measured and summarized in Figure 5 as a function
of input model sizes. Other recent spectral watermarking
schemes like [20,7] need much longer running times than
ours, as they have to solve large eigensystems which will
be impractical for meshes with more than 104 vertices.
Even when taking the differences of computing hardware

Fig. 6 The Max model (left, 200K vertices), watermarked
mesh (middle) and the test mesh under both similarity trans-
form and simplification attacks (right, 1% of original size).
The extracted correlation is R = 1.

Fig. 7 The cropped Horse model (left, 51K vertices) and the
cropped Igea model (right, 134K vertices). The correlation is
R = 1 in both cases.

into account, we still find that (e.g. for the bunny model
reported in both papers) our algorithm runs more than
100 times faster, which are two orders of magnitude.

Actually, as our watermarking method runs so fast,
experiments show that the performance bottleneck arises
from the memory consumption. For example, our non-
optimized watermarking proto-system needs more than
1GB Linux process memory to deal with the Iphigenie
mesh and the basis functions themselves require about
400MB space already. However, this is just the reality
that all spectral-based approaches have to face as basis
functions always need to be computed for both water-
mark embedding and extraction phases.

In addition, as our watermarking scheme only modi-
fies the “low-frequency” component of a given shape, the
visual differences between the original mesh and the wa-
termarked mesh are almost imperceptible (cf. Fig. 1, 6
and 10). And this will make the watermarking scheme
more robust to malicious attacks.

6.2 Robustness Against Attacks

We test our watermarking method with different mesh
models to verify the robustness of embedded watermarks
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under various types of real world attacks. The water-
marks will be generated randomly many times for the
same testing object and the extracted correlation R (cf.
Equa. 2) will be the mean value. If the correlation is
larger than 0.75, the ownership will be claimed.

Similarity Transforms can be handled by the first
registration process (cf. Fig. 6). As our registration re-
sults are precise enough, the similarity transform attack
will have very few influences on the correlation R;
Cropping is dissolved by the resampling process to
mark the cropped vertices and neglect them in the ba-
sis functions when performing the spectral analysis. The
correlation R is always 1 (cf. Fig. 7);
Simplification is simulated with a standard QEM-
based greedy decimation scheme [9]. The resampling pro-
cess will equalize the mesh topology for watermark ex-
traction (cf. Fig. 8). Note that even under extreme sim-
plification, ownership still can be successfully asserted
(cf. Fig. 6 and 8);
Additive noise will randomly modify the vertex po-
sitions in the normal directions. Figure 9 shows that our
watermarking scheme is robust against strong noises;
Remeshing attack tries to improve the shape qual-
ity of mesh primitives where the initial topology will be
greatly destroyed (cf. Fig. 10). Thus the resampling pro-
cess is also necessary for watermark extraction.
Smoothing will apply certain iterations of Laplace
operators [27] to the watermarked mesh. Figure 11 com-
pares the robustness effects of different iteration numbers
to the extracted correlations.

The above testing scenarios show that we can cor-
rectly assert the ownership of the watermarked mesh.
We also test our watermarking scheme with false-positive

attacks, e.g., to perform the same watermark extraction
step to a mesh without actrually having embedded the
designated watermarks or with other watermarks em-
bedded. The extracted correlations are always below 0.5.
Regarding the specified threshold, our watermarking al-
gorithm will not incorrectly assert that a model is wa-
termarked when it is not.

In summary, without perceptible differences between
the original and watermarked meshes, our watermarking
scheme is robust against a lot of different real world at-
tacks, even the combined attacks as well (cf. Fig. 6), thus
can lead to accurate ownership assertion and copyright
protection.

6.3 Comparing to Laplace Basis Functions

Figure 11 compares our new orthogonal basis functions
derived from RBFs to the Laplace basis functions (LBFs),
the (leading) eigenvectors of the Laplace matrix of the
input mesh [14] adopted by recent spectral watermarking
schemes [20,7]. It is interesting to see that our basis func-
tions can capture more shape details than LBFs with the

Fig. 8 The Rocker arm mesh (in Fig. 4) under simplifica-
tion attack (left, 2% of original size) and the resampled mesh
(right). The correlation is R = 0.96.

Fig. 9 The watermarked Dragon model (left, 438K ver-
tices) and attacked by additive noise(right) with maximum
deviation of 1% to main bounding box diagonal length. The
correlation is R = 1.

same number of basis functions. This is because ours are
geometry-aware derived functions while LBFs are merely
derived from the mesh topology. On the other hand, it is
still easy to find that our watermarking scheme can have
almost the same robustness against attacks and water-
marking quality as previous spectral methods based on
LBFs.

7 Conclusions

In this paper, we have presented a novel spectral wa-
termarking scheme using a new set of orthogonal ba-
sis functions derived from radial basis functions. While
observing similar watermarking quality and robustness
against attacks as other related approaches, our method
runs much faster by two orders of magnitude thus leading
to efficient watermarking of very large models.

The proposed watermarking algorithm is fast, but it
is also very flexible. In fact, we also find that our wa-
termarking technique using RBFs can be easily applied
to point-sampled geometry by slightly changing the ex-
traction process like adding registration and resampling
tools for point sets. Since RBFs are used, the method can
be extended for watermarking higher dimensional data,
e.g. points with colors, meshes with texture coordinates,
and even animated meshes.
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Fig. 10 The Isis mesh (left, 188K vert.), watermarked mesh
(middle) and remeshed mesh (right, 8K vert.). The correla-
tion is R = 1.

Future work can be extended in many directions: Re-
lationships between our new orthogonal basis functions
and LBFs have to be more clearly understood. Also more
types of attacks like free-form constrained modeling [5]
need to be handled. Finally, out-of-core watermarking
implementations are necessary as massive models are
usually more precious and have higher demands on the
protection.
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